
Boot2container
An initramfs for reproducible infrastructures

Martin Roukala (Valve contractor)

Who am I?

Martin Roukala (né Peres), AKA mupuf
Freelancer at MuPuF TMI and Valve contractor

Most active in the graphics subsystem

My mission

Production-ready upstream Linux graphics drivers
Usable
Reliable
Available

Nice-looking games
High FPS, Low latency
Super complex beasts

Best compability
Best performance
Worst reliability

Contradictions? I think not!

Solving the contradictions

Automated testing to the rescue!

But this ain't for the feint of heart...
Every GFX component needs its own test environment
Test suites are enormous (~1M unit tests for Vulkan)
Games are even harder to test automatically
Test results need to be stable, and reproducible by developers
Developers need feedback ASAP, but test content takes ~6h
Tens of machines running unreliable kernels and crash-happy GPUs

How do we make such a
CI/test system?

By using/creating blocks with *great* interfaces!

Case study: creation & deployment of the test environment

Generating the test environment

Rootfs

Traditional method of deploying the test
environment in the embedded world
Can be created using:

 / / / ...Yocto buildroot Debos
Generates a full disk image

Self-contained
Slower: The full image needs flashing
Low portability (modules, firmwares)

Interface:
Provides platform setup and shared
test environment for all test suites

OCI containers

Traditionally used for unit testing,
and in the web world
Can be created using:

 / / / ...docker podman buildah
Generates a set of overlays (layers)

Requires platform setup
Faster: the base OS is cached
High portability

Interface:
Provides isolated test env. for
each test suite (composable)

Comparing the Embedded vs Web ways

https://www.yoctoproject.org/
https://buildroot.org/
https://github.com/go-debos/debos
https://docs.docker.com/get-docker/
https://podman.io/
https://buildah.io/

How to start your container?

Containers require platform initialization to be done
Do we need another rootfs for this?

No!

What is boot2container?
Small (< 20 MB) / net-bootable initramfs ()
Declarative configuration via the kernel command line
Features:

url

Network: DHCP & NTP
Cache drive:

Auto-selection, or configurable
Auto-formating, if needed
Swap file

Volumes:
mirroring from an S3-compatible storage
local encryption (fscrypt)
expiration

Multi-architecture: Based on u-root, podman, and shell scripts

https://gitlab.freedesktop.org/mupuf/boot2container

How to use boot2container?

Directly:

Netbooted:

qemu-system-x86_64 -kernel bzImage -initrd boot2container.cpio -
nographic -m 512M -append 'console=ttyS0 b2c.container="-ti
docker://alpine:latest"'
or using your favorite bootloader: grub, uboot, ...

PXE/HTTP: For machines inside a trusted local network
iPXE/HTTPS: For standalone machines on the other side of the planet

Quick demo

$ wget -O b2c-v0.9.3.cpio.xz
https://gitlab.freedesktop.org/mupuf/boot2container/-/releases/v0.9.3/downloa
ds/initramfs.linux_amd64.cpio.xz
$ wget
https://gitlab.freedesktop.org/mupuf/boot2container/-/releases/v0.9.3/downloa
ds/bzImage
$ fallocate -l 1G disk.img
$ qemu-system-x86_64 -drive file=disk.img,format=raw,if=virtio -kernel bzImage
-initrd b2c-v0.9.3.cpio.xz -nographic -m 384M -enable-kvm -append
'console=ttyS0 b2c.cache_device=auto b2c.ntp_peer=auto b2c.container="-ti
docker.io/library/alpine:latest"'

Real-world example

b2c.cache_device=auto b2c.ntp_peer=auto

b2c.minio="job,{{ minio_url }},{{ job_bucket_access_key }},{{ job_bucket_secret_key }}"

b2c.volume="job,mirror=job/{{ job_bucket }},pull_on=pipeline_start,push_on=changes,expiration=pipeline_end"

b2c.container="-ti registry.freedesktop.org/mupuf/valve-infra/machine_registration check"

b2c.container="-t -v job:/results registry.freedesktop.org/drm/igt-gpu-tools/igt:master igt_runner -o /results"

console={{ local_tty_device }},115200 earlyprintk=vga,keep loglevel=6

Linux cmdline to run a test suite (IGT) and download results

Potential use cases for b2c

Fleet of automated systems local or deployed in remote places:
Netbooting is feasible (~50MB per boot + initial download of the layers)
Every boot behaves as if it were the first boot
No local IT needed aside from replacing misbehaving hardware
Deployments: public transport screens, chains of shops, ...

Server provisioning in the cloud

Let me know if you have other uses in mind!

Conclusion

For our GFX CI needs, we need:
Reproducibility of results/environment/CI infrastructure
Reliability
Simplicity

Boot2container delivered on the requirements, and more:
Easy to deploy anywhere (locally, or remotely)
Low maintenance cost (just bump the b2c version regularly)

Future work

Add support for the most common architectures (WIP)
Rewrite the initscript in Go
Reduce the size of the initramfs by merging all Go binaries in one
Add support for downloadable modules to reduce the kernel's size
Finalize the interface in the v1.0

Links
boot2container:

Story about the creation of boot2container:

Netboot locally or over the internet:

Setting up a desktop PC for testing:

https://gitlab.freedesktop.org/mupuf/boot2container

https://mupuf.org/blog/2021/02/10/setting-up-a-ci-system-part-2-
generating-and-deploying-your-test-environment/

https://mupuf.org/blog/2022/01/10/setting-up-a-ci-system-part-3-
provisioning-your-ci-gateway/

https://mupuf.org/blog/2021/02/08/setting-up-a-ci-system-preparing-
your-test-machine/

https://gitlab.freedesktop.org/mupuf/boot2container
https://mupuf.org/blog/2021/02/10/setting-up-a-ci-system-part-2-generating-and-deploying-your-test-environment/
https://mupuf.org/blog/2022/01/10/setting-up-a-ci-system-part-3-provisioning-your-ci-gateway/
https://mupuf.org/blog/2021/02/08/setting-up-a-ci-system-preparing-your-test-machine/

Thanks for listening!

