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Abstract—Power management in Open Source operating sys-
tems is currently limited by the fact that hardware companies
do not release enough documentation to write the most power-
efficient drivers. This problem is even more present in GPUs
despite having the highest performance-per-Watt ratio found in
today’s processors. This paper presents an overview of GPUs from
a power management point of view and what power management
features have been found when reverse engineering modern
NVIDIA GPUs. This paper finally discusses about the possibility
of achieving self-management on NVIDIA GPUs and also dis-
cusses the future challenges that will be faced by the community
when autonomic systems like Broadcom’s videocore R©will become
mainstream.

I. INTRODUCTION

Historically, CPU and GPU manufacturers were aiming
to increase performance as it was the usual metric used by
consumers to select what to buy. However with the rise of
laptops and smartphones, consumers have started to prefer
higher battery-life, slimmer, quieter, and cooler devices. Noise
was also a concern among some desktop users who started
using water cooling in place of fans. This led CPU/GPU
manufacturers to not only take performance into account,
but also performance-per-Watt. Higher performance-per-Watt
means lower heat dissipation for the same amount of com-
puting power, which in turn allows shrinking the heatsink/fan
that keep the processor cool. This results in slimmer and/or
quiter devices. Decreasing power usage is also a major concern
for datacenters and supercomputers, as they already consumed
1.5% of the USA’s electricity production in 2007 [1].

As power management (PM) is a non-functional/auxiliary
feature, it is usually non-standard, poorly documented and/or
kept secret. As some PM features require the intervention
of the host system, a driver is often needed to obtain the
best performance-per-Watt. This is not a problem for closed-
source OSes such as Microsoft Windows R©or Mac OS R©as
the manufacturer usually supplies a proprietary driver for
these platforms. It is however a major problem for Open
Source operating systems like Linux as those features are not
documented and cannot be re-implemented easily in an Open
Source manner.

The absence of documentation and the lack of open hard-
ware also sets back research and open source enthusiasts as
it mandates reverse engineering the undocumented features
which may not even be advertised. This lack of documentation
is most present in the GPU world, especially with the company
called NVIDIA which has been publicly shamed for that reason

by Linus Torvalds [2], creator of Linux. With the exception of
the ARM-based Tegra, NVIDIA has never released enough
documentation to provide 3D acceleration to a single GPU
after the Geforce 4 (2002). Power management was never
supported nor documented by NVIDIA. Reverse engineering
the power management features of NVIDIA GPUs would allow
to improve the efficiency of the Linux community driver for
NVIDIA GPUs called Nouveau [3]. This work will allow
driving the hardware more efficiently which should reduce the
temperature, lower the fan noise and improve the battery-life
of laptops.

Nouveau is a fork of NVIDIA’s limited Open Source driver,
xf86-video-nv [4] by Stephane Marchesin aimed at delivering
Open Source 3D acceleration along with a port to the new
graphics Open Source architecture DRI [5]. As almost no
documentation from NVIDIA is available, this driver mostly
relies on reverse engineering to produce enough knowledge
and documentation to implement the driver. The Nouveau
driver was merged into Linux 2.6.33, released in 2009, even
though 3D acceleration for most cards has been considered
experimental until 2012. I personally joined the team in 2010
after publishing [6] a very experimental implementation of
power management features such as temperature reading and
reclocking, which are essential to perform Dynamic Volt-
age/Frequency Scaling (DVFS). Since then, power manage-
ment is being investigated and implemented in the driver
whenever a feature is well understood.

This paper is an attempt at documenting some of the
features that have been reverse engineered by the Nouveau
team and comparing them to the state of the art. Some
of the documented features have also been prototyped and
implemented in Nouveau. A brief evaluation of the GPU power
consumption has also been carried out.

Section II presents an overview of the power-related
functionalities needed to make the GPU work. Performance
counters and their usage is detailed in section III. In section IV,
we document the hardware fail-safe feature to lower tempera-
ture and power consumption. Section V introduces NVIDIA’s
RTOS embedded in the GPU. Finally, section VI presents the
vision of autonomic computing, the challenges in introduces
in Open Source driver development and how NVIDIA GPUs
could fit to this model.



II. GENERAL OVERVIEW OF A MODERN GPU

This section is meant to provide the reader with information
that is important to understand the following sections.

A. General-Purpose Input/Output (GPIO)

A General-Purpose Input/Output (GPIO) is a pin of a chip
that can be software-selected as a binary input or output at run
time.

Input GPIO pins are used by NVIDIA to sense whether
the external power supply or the SLI brige is connected, if
the GPU is overheating (in the case of an external temperature
sensor) or to read the fan’s rotational speed. Output GPIO pins
are used by NVIDIA to drive a laptop’s backlight, select the
memory and core voltages or adjust the fan speed.

Some GPIO pins can be connected to special features like
hardware pulse-width modulation (PWM) controllers which
allow, for instance, varying the amount of power sent to the fan
or the backlight of a laptop’s screen. Some chips also have a
hardware tachometer which calculates the spin rate of the fan.
All of these operations could be done in software but they
would require the CPU to wake up at least dozens of times
per second, issue a read/write request through the PCIe [7] port
and then go back to sleep again. Waking up the CPU for such
trivial operations is inefficient and should thus be avoided.

B. Energy sources

A modern desktop GPU draws its power from the PCIe
port or PCIe connectors (6 or 8 pins). The PCIe port and 6-
pin PCIe connectors can each source up to 75W while the
8-pin PCIe connector can source up to 150W.

These power sources all provide different voltages that are
way higher than the operating voltage of the GPU. The DC-
DC voltage conversion is done by the voltage controller which
sources from the PCIe port and connectors and outputs power
to the GPU at its operating voltage. The output voltage is
software-controllable using a GPIO pin. A GPIO pin is also
usually used by cards with PCIe connectors to sense if they
are connected to a power source. This allows NVIDIA’s driver
to disable hardware acceleration when the connectors are not
connected, avoiding the GPU from draining too much current
from the PCIe port. In some cases, a GPIO pin can also control
the emergency shutdown of the voltage controller. It is used
by the GPU to shutdown its power when the card overheats.

There are currently only up to two power domains on
NVIDIA cards, one for the GPU and one for memory. The
memory’s power domain is limited to 2 possible voltages while
the GPU’s usually has at least 3 and can have up to 32 voltage
possibilities.

On some high-end cards, the voltage controller can also
be queried and configured through an I2C interface. Those
expensive controllers can sense the output power along with
the power draw of each of the energy sources.

Figure 1 illustrates a simple view of the power subsystem.
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Figure 1. Overview of the energy sources of the GPU

C. Temperature management

Just like modern CPUs, GPUs are prone to overheating.
In order to regulate their temperature, a temperature sensor
needs to be installed. This sensor could be internal to the
chip or be external using an I2C [8] sensor. Usually, external
sensors can also drive a fan’s speed according to the card’s
temperature. When using the internal sensor, the driver is
usually responsible for polling the temperature and updating
the fan speed.

D. Clock tree

Having the possibility to change frequencies on the fly
is another feature of modern GPUs aimed at lowering power
consumption. On NVIDIA GPUs, there are two clock sources,
the PCIe reference clock (100 MHz) and an on-board crys-
tal (usually 27 MHz). The frequency of the clocks is then
increased by using a Phase-locked loop (PLL). A PLL takes
the input frequency Fin and outputs the frequency Fout. The
relation between Fin and Fout in the simplest PLL is detailed
in equ. 1. The parameters N and M are integers and have a
limited range. This range depends on the PLL and is usually
documented in the Video BIOS (VBIOS). This means that not
all output frequencies are achievable.

Fout = Fin ∗
N

M
(1)

There are different kinds of PLLs inside a single GPU and
across GPU generations. For instance, some PLLs may actually
have 2 stages and a power-of-two post divider like shown by
equ. 2. This second stage or the power-of-two divider could
also be set in bypass mode.

Fout = Fin ∗
N
M ∗

N2
M2

2p
(2)

The PLLs are not the only components that can alter the
clock frequency. There may also be clock dividers. Those
dividers can only lower the frequency of the input clock. There
are usually two kinds of dividers used by NVIDIA, the power-
of-two dividers and the integer dividers.

The power-of-two dividers are only able to lower the clock
frequency by a power-of-two factor as detailed by equ. 3. They
are easily constructed by chaining flip-flops and routing the
output of each flip-flop to a multiplexer. The multiplexer is
then used to select the wanted division factor by selecting
which flip-fop’s output should be used as an output for the



divider. Integer dividers are more expensive than power-of-two
dividers, but they can divide a clock by an integer as shown
by equ. 4.

Fout =
Fin

2p
(3)

Fout =
Fin

n
(4)

Another common component involved in the clock tree is
the multiplexer. A multiplexer takes as an input several clocks
and only outputs one of them. The selection of the output clock
is controllable electronically and is exposed as a register for
the driver. Figure 2 is an example of a 4-inputs multiplexer
with 2 select-lines to be able to address every input.
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Figure 2. Example of a 4-data-input multiplexer

It would be simplistic to think that the GPU uses a single
clock for the whole card. Indeed, a modern GPU has multiple
engines running asynchronously which are clocked by different
clock domains. There are up to 13 clock domains on Fermi [9]
among which we can find the host, video RAM (VRAM),
shader, copy (asynchronous copy engine) and ROP domains.
The number of clock domains varies depending on the chipset
and the chipset family.

Figure 3 gives a rough overview of how PGRAPH’s clock
can be generated. This part of the clock tree involves the two
input clocks along with many PLLs and multiplexers. Many of
these PLLs are actually shared and/or could be used to clock
several engines. In this example, NVCLK could also be set
to use the DOM6 clock. How this clock is generated is not
detailed in this paper but it is equivalent to the way nvclk is.

NVIDIA GPUs’ clock trees have been reverse engineered
by using the performance counters (detailed in section III)
which can count every clock cycle of most clock domains.
The clocks can be read through nvatiming, a tool from the
envytools repository [10]. This tool should be run before and
after modifying the content of a register that is suspected to
configure the clock tree. As a start, it is possible to check all
the registers NVIDIA’s proprietary driver reads from or writes
to when reclocking the GPU. These reads/writes can be logged
by tracing the Memory-Mapped IO (MMIO) accesses of the
proprietary driver using the MMIO-trace feature of the Linux
kernel [11].

E. The role of the video BIOS

On an IBM-PC-compatible computer, the BIOS is re-
sponsible for the Power-On Self Test (POST). During the
POST phase, the BIOS performs some sanity checks and
then initialises peripherals by giving them addresses in the
linear address space and running their internal BIOS when
applicable.
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Figure 3. Overview of the clock tree for nvclk (core clock) on an nv84

Similarly, in the case of the video card, the video BIOS
(VBIOS) is responsible for booting up the card enough to
provide the VGA/VESA interface to the host. This interface
is then used by the BIOS and the bootloader to display boot
information on the screen.

In order to bring up this interface, the VBIOS configures
the GPU’s clock tree, configures the memory controllers,
uploads default microcodes to some engines, allocates a frame-
buffer to store the content of the screen and finally performs
graphic mode setting. The VBIOS is then called by the BIOS
when an application on the host requests anything such as
changing the resolution. The VBIOS is written in 16-bit x86
code and should be considered as being a low-level simple
driver.

As NVIDIA does not select the VRAM chips, the voltage
controller, where the GPIO pins are connected or what graphics
connectors (HDMI, DVI, VGA, DP, etc...) are available, the
card manufacturers need a way to tell the VBIOS how to
set up the card at boot time. This is why NVIDIA stores the
manufacturer-dependent information in tables in the VBIOS.
These tables can be decoded by nvbios, found in the envytools
collection [10]. This collection also contains nvagetbios and
nvafakebios which respectively allow to download the VBIOS
or to upload a new VBIOS non-permanently, respectively.

As manufacturers are using the same BIOS for multiple
cards, some of the tables are indexed by a strap register. This
register’s value is set by the manufacturer by tying some GPU
pins to specific voltages.

1) The GPIO & external device tables: They store which
devices or functions are accessible through the chip’s pins



and how to access them. The EXTDEV table references I2C-
accessible devices while the GPIO table only references GPIO-
accessible functions. Both also represent what is accessible by
a number, called a tag or type. In the case of the GPIO table,
each entry contains at least a GPIO pin, the associated tag
(for instance, PANEL PWR), the direction (input or output),
the default state (HIGH or LOW) and if the GPIO is inverted
or not. In the case of the EXTDEV table, each entry contains
the device type/tag, which I2C bus it is accessible on and at
which address. Possible devices could be the ADT7473 which
is an external temperature management unit or the PX3540
voltage controller.

2) The thermal table: Its role is to store temperature-related
parameters, as defined by the card manufacturer. The temper-
ature sensor’s parameters (offset and slope) can be adjusted.
It also defines hysteresis and temperature thresholds such as
fan boost, downclock and shutdown which are respectively
defining the temperature at which the fan should be set to
100%, the temperature at which the card should be down-
clocked and the temperature at which the computer should be
shut down. Finally, the fan response to the temperature can
be linear or trip-point based. The thermal table then stores the
parameters for either method.

3) The performance level table: It specifies up to 4 perfor-
mance levels. A performance level is defined by a set of clock
speeds, a core voltage, a memory voltage and memory timings
and a PCIe link width speed. The voltage is stored as an ID
that needs to be looked up in the voltage-mapping table. It
is by altering this table that [12] managed to force NVIDIA’s
proprietary driver to set the clocks the way they wanted.

4) The voltage and voltage-mapping tables: The voltage
table contains {Voltage ID, voltage} tuples describing the
various supported voltages and how to configure the volt-
age controller. Those voltages are referenced by the voltage-
mapping table which defines {ID, voltage min, voltage max}
tuples. The voltage min and voltage max parameters of this
table define an acceptable voltage range for the performance
level referencing the ID.

5) The RAM type, timings and timings-mapping tables:
Their role is to tell the driver which memory type and timings
should be set when reclocking memory. The RAM type table
is indexed by the strap. This information is necessary in order
to program the memory controller properly as DDR3, GDDR3
and GDDR5 do not have the same configuration registers. The
timings-mapping table contains several entries, each covering
a memory frequency range. The values of each entry tell how
to configure the memory controllers whenever the driver wants
to use a frequency from within this range. Each entry contains
sub-entries which are indexed by the strap register. Each sub-
entry contains the timing ID of the timings table that should
be used along with some memory-specific parameters. The
timings table contains several entries which are referenced
by the timings-mapping table. Each entry is either the values
that should be written to the memory timings registers or
the aggregation of several parameters that allow the driver to
calculate these values. Unfortunately, the equations to calculate
the values from the parameters greatly varied in the Geforce
8 era and are not completely understood on some GPUs.

F. The reclocking process

Reclocking is the act of changing the frequencies of
the clocks of the GPU. This process drastically affects the
performance and the power consumption of the GPU. The
relation between clocks, power consumption and performance
is very hardware- and task-dependent. There is however a
known relation between the voltage, the frequency of the clock
and the final power consumption for CMOS circuits [13] as
shown by equ. 5, 6 and 7.

P = Pdynamic + Pstatic (5)

Pstatic = V Ileak (6)

Pdynamic = CfV 2 (7)

P is the final power consumption of the circuit and results
from both the dynamic (Pdynamic) and the static (Pstatic)
power consumption of the circuit.

The static power consumption comes from the leakage
power of the transistors. This power consumption is the
product of the voltage V at which the circuit operates and the
leakage current Ileak. This leakage current is mostly influenced
by the hardware design, the voltage at which the transitor is
driven and the temperature. From a software point of view, the
static power consumption can only be lowered by dropping the
voltage or by shutting down the power (power gating) of the
units of the GPU that are not in use. On NVIDIA hardware,
power gating an engine can be done by clearing its associated
bit in one register. Patents [14] and [15] on engine-level power
gating from NVIDIA are informative about the way power
gating may be implemented on their hardware.

The dynamic power consumption is influenced by the
capacitance of the transistor gates C (which decreases with the
transistor size), the frequency at which the circuit is clocked f
and the voltage at which the circuit operates V . As C is only
dependent on the way transistors where etched, it cannot be ad-
justed at run time to lower power consumption. Only f and V
can be adjusted at run time by respectively reprogramming the
clock tree’s PLLs and reprogramming the voltage controller.
While f has an immediate impact on performance, V has none
even though it needs to be increased with f in order for the
chip to be able to meet the needed switching time. Another
way to decrease the dynamic power consumption is to cut the
clock of the parts of the chip that are not used at the moment
to compute something meaningful (clock gating). The actual
implementation in NVIDIA’s proprietary driver has not been
reverse engineered yet but hints of how it works may be found
in patents [16] and [17].

The repartition of the power consumption between the
dynamic and the static power consumption is very dependent
on the etching process. Static power consumption used to be
negligeable [18] but it became an increasing problem when
shrinking the transistors. Figure 4 illustrates the trends in static
and dynamic power dissipation as foreseen by the International
Technology Roadmap for Semiconductors in 2003. However,



Figure 4. Total chip dynamic and static power dissipation trends based on
the International Technology Roadmap for Semiconductors [18]

this figure does not take into account the recent progress in
etching techniques such as Intel’s tri-gate.

During the reclocking process, both the frequency and the
voltage are modified in order to reach the wanted perfor-
mance level. Practical tests showed that reclocking to the right
performance level a Geforce GTX 480 can achieve a 28%
lower power consumption while only decreasing performance
by 1% for a given task [12]. The process of reclocking the
GPU based on the current load of the task is called Dynamic
Voltage/Frequency Scaling (DVFS).

In hardware such as NVIDIA’s where clock gating is well
implemented, DVFS’s role is to lower the static power con-
sumption of the circuit by lowering the operating voltage. In-
deed, clock gating cuts all of the dynamic power consumption
but does not influence the static power consumption. Engine-
level power gating cannot cut the power consumption of an
engine without loosing context which means it cannot be used
when applications are using the engine. In this case, the only
way to lower the power consumption is to lower the voltage at
the expense of performance. If DVFS is implemented properly,
the performance should still be enough for the need of the
applications running on the GPU. Reading the GPU load can
be performed by reading the hardware performance counters
which are described in section III.

Due to the fact that GPUs are almost entirely undoc-
umented and that the driver’s interfaces are mostly closed,
DVFS has been studied little in practice on GPUs, contrarily
to CPUs. The only stable open-source implementation of
discrete-GPU DVFS that I know of is available in the Radeon
driver [19] and has been available since 2010. Some insightful
comments from one of the engineers who made this happen
are publicly available [20]. Reclocking on NVIDIA GPUs with
Open Source software has been an on-going task since 2010 [6]
and I presented my first experimental DVFS implementation at
the X.org developer conference in 2011 [21]. Since then, Ben
Skeggs has also managed to implement experimental DVFS
support for some selected cards of the Kepler family which
may be published this year.

The differences found in GPUs compared to CPUs are the
multiple clock domains and the fact that not all clocks can be
adjusted at any time, mainly due to the real time constraint
imposed by streaming pixels to the screen. This constraint
is imposed by the CRT Controller (CRTC) which reads the
pixels to be displayed to the screen from the video memory
(framebuffer) and streams it through the VGA/DVI/HDMI/DP
link. As reclocking memory requires putting the VRAM in
a self-refresh mode which is incompatible with answering
memory requests, and as reclocking the PLLs takes a few
microseconds, reclocking cannot be done without disturbing
the output of the screen unless done during the screen’s vertical
blank period. This period was originally introduced to let the
CRT screen move the electron beam from the bottom-right
to the top-left corner of the screen. This period lasts about
400 to 500 µs and is more than enough time to reclock
memory. However, on a screen refreshed 60 times per second,
vblank only happens every 16.6ms. In the case where the user
connects several monitors to the GPU, the vblank periods are
not usually synchronised which prevents reclocking memory
tearlessly on all monitors. In this case, the NVIDIA proprietary
driver selects the highest performance level and deactivates
DVFS.

Contrarily to memory reclocking, engine reclocking can
be done at any time as long as the GPU is idle. The GPU
can generally be forced to idle by disabling command-fetching
and waiting for the GPU to finish processing. The engine
reclocking process is not fully understood on NVIDIA cards
although I found an empirical solution that managed to reclock
the GPU millions of times without crashing on the Tesla
chipset family. Further investigation is still needed.

The PCIe port which is used to link the CPU and the GPU
also consumes some power. The PCIe standard specifies the
link should be an aggregation of multiple serial lanes. Each
lane has a bandwith of 250MB/s to 2GB/s depending on the
PCIe version. The maximum number of lanes is 32 which
means the maximum bandwidth achievable on a PCIe port is
64GB/s. Not all this bandwidth is useful at any time, yet, it
consumes a lot of power as can be seen on Figure 5. To save
power, it is possible to lower both the speed of individual lanes
and the lanes count dynamically depending on the instanteous
PCIe link load.

Figure 5. Maximum power consumption of the PCIe port at various link
configurations [22]

Active State Power Management (ASPM) is another tech-
nique that is used to lower the power consumption of the PCIe



link by introducing two low-power states. The L0 power state
only concerns one side of the link (usually the GPU) while the
L1 state concerns both ends. The L1 state yields the lowest
power consumption although L1’s exit time is longer than
L0’s. This increases the PCIe link’s latency in some cases.
Figure 5 shows that using ASPM can divide by 3 the power
consumption induced by a PCIe lane. Unfortunately, ASPM
is also linked to stability problems on Linux, as explained by
Matthew Garrett [23].

III. PERFORMANCE COUNTERS

The (hardware) performance counters are blocks in modern
microprocessors that count low-level events such as the number
of branches taken or the number of cache hits/misses that
happened while running a 3D or a GPGPU application. On
NVIDIA’s Kepler family, there are 108 different GPGPU-
related monitorable events documented by NVIDIA.

A. Usage

Performance counters provide some insight into how the
hardware executes its workload. They are a powerful tool to
analyse the bottlenecks of a 3D or a GPGPU application.
They can be accessed through NVIDIA PerfKit [24] for 3D
applications or through Cupti [25] for GPGPU applications.

The performance counters can also be used by the driver
in order to dynamically adjust the performance level based on
the load usage of the GPU.

Some researchers also proposed to use performance coun-
ters as an indication of the power consumption with an average
accuracy of 4.7% [26].

B. How does it work

The performance counter blocks are fairly well understood
thanks to the work of Marcin Kościelnicki and Christoph
Bumiller. There are several blocks of performance counters in
modern NVIDIA GPUs, PCOUNTER, the MP counters and
PDAEMON’s counters. As PCOUNTER and the MP counters
are very similar, we will first detail how PCOUNTER works
in the Tesla family (Geforce 8) before introducing the MP
counters. The PDAEMON counters will however be detailed
in section V.
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Figure 6. Example of a simple performance counter

PCOUNTER receives hardware events through internal
connections encoded as a 1-bit value which we call signal.
This signal is sampled by PCOUNTER at the rate of clock
of the engine that generated the event. An event counter is
incremented every time its corresponding signal is sampled at

1 while a cycles counter is incremented at every clock cycle.
This simplistic counter is represented by figure 6.

However, it is expensive to have a counter for every
possible signal. The signals are thus multiplexed. Signals are
grouped into domains which are each clocked by one clock
domain. There are up to 8 domains which hold 4 separate
counters and up to 256 signals. Counters do not sample one
signal, they sample a macro signal. A macro signal is the
aggregation of 4 signals which have been combined using a
function. An overview of this logic is represented by figure 7.
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Figure 7. Schematic view of a domain from PCOUNTER

The aggregation function allows to specify which combina-
tion of the 4 signals will generate a 1 in the macro signal. The
function is stored as a 16 bit number with each bit representing
a combination of the signals. With sx(t) being the state of
selected signal x (out of 4) at time t, the macro signal will be
set to 1 if the bit s3(t) ∗ 23 + s2(t) ∗ 22 + s1(t) ∗ 21 + s0(t)
of the function number is set.

As an example, to monitor signal s0 only, the aggregation
function should be programmed so as no matter the state of
signals 1, 2 and 3, whenever signal 0 is high, the output of
aggregation function should be high too. As can be seen in
table I, the function number should have all the odd bits set
and all the even bits cleared. The function number is thus
1010101010101010(2).

Table I. TRUTH TABLE TO MONITOR s0 ONLY

s3 s2 s1 s0 Decimal Selection
0 0 0 0 0
0 0 0 1 1 X
0 0 1 0 2
0 0 1 1 3 X
0 1 0 0 4
0 1 0 1 5 X
0 1 1 0 6
0 1 1 1 7 X
1 0 0 0 8
1 0 0 1 9 X
1 0 1 0 10
1 0 1 1 11 X
1 1 0 0 12
1 1 0 1 13 X
1 1 1 0 14
1 1 1 1 15 X

The 4 counters of the domain can be used independently
(quad-event mode) or used together (single-event mode). The
single-event mode allows counting more complex events but



it is not discussed here. PCOUNTER also has a record mode
which allows saving the content of the counters in a buffer in
VRAM periodically so that the driver does not have to poll
the counters as often. The full documentation of PCOUNTER
can be found at hwdocs/pcounter.txt in envytools [10]. Un-
fortunately, the semantic of most PCOUNTER signals is still
unknown.

The MP counters do not support the record and the single-
event modes. However, contrarily to PCOUNTER, the MP
counters are bound to a channel. This means they are only
counting the events for the application that requested them
and not monitoring the GPU as a whole. Each application
can configure the MP counters the way they want without
interfering with any other application. Configuring the MP
counters can be done through the pushbuffer and the help of
a handful software methods. A limitation of the MP counters
is that they can only monitor PGRAPH-related signals. All
the hardware events monitorable through NVIDIA’s Cupti [25]
are now also monitorable on Kepler thanks to the work
of Christoph Bumiller. Support for Fermi and older card is
currently being implemented by Samuel Pitoiset as part of his
Google Summer of Code 2013 project [27].

IV. PTHERM : THERMAL & POWER BUDGET

PTHERM is a piece of hardware that monitors the GPU
in order to make sure it does not overheat or exceed its power
budget.

A. Thermal management

The primary function of PTHERM is to make sure the GPU
does not exceed its temperature budget. PTHERM can react
to some thermal events by automatically setting the fan speed
to 100%, lowering some frequencies of the GPU, or shutting
down the power to the card.

Reading the temperature from the internal sensor can be
done simply by reading a register which exposes the tempera-
ture in degrees Celsius. The sensor’s calibration was performed
in factory and stored in the card’s fuses. This allows the GPU
to monitor its temperature even at boot time and without the
need of an external driver.

PTHERM generates thermal events on reaching several
temperature thresholds. Whenever the temperature reaches a
threshold, an interrupt request (IRQ) can be sent to the host for
it to take actions to lower the temperature. The IRQ can be sent
conditionally, depending on the direction of the temperature
(rising, falling or both). The hardware can also take actions
to lower the temperature by forcing the fan to 100% or by
automatically lowering the clock frequency. The latter feature
will be explained in the following subsections. However, only
3 thresholds can generate automatic hardware response. The
others are meant to be used by the driver.

In the case where the GPU is using an external temperature
sensor, hardware events are gathered through the chip’s GPIO
pins which are connected to the external sensor. The external
chip is then responsible for monitoring the temperature and
comparing it to certain thresholds. These thresholds are pro-
grammable via I2C and are set at boot time during the POST
procedure and again when the driver is loaded by the host
computer.

B. Power reading

Estimating the power consumption can be done in real time
using two different methods.

The first one is to read the power consumption by measur-
ing the voltage drop across a shunt resistor mounted in series
with the chip’s power line. This voltage drop is linear with the
current flowing through the power line with a factor of Rshunt.
The instantaneous power consumption of the chip is then equal
to the voltage delivered by the voltage controller times the
measured current. This method is explained in figure 8.

Shunt resistor
R

I

UR = R * I

ADC

ChipsetVoltage
Controller

Vdd

Power = Vdd * I
   = Vdd * UR / R UR

Figure 8. Measuring the power consumption of a chip

However, this technique requires an Analog-to-Digital-
Converter (ADC) and some dedicated circuitry. The cost of
this solution is quite high as it requires dedicated hardware
on the PCB of the GPU and a fast communication channel
between the ADC and the chip. Also, fast ADCs are expensive.
Therefore, it explains why only the voltage controllers from
high-end cards can output this information.

Another solution is to monitor power consumption by mon-
itoring the block-level activity inside the chip. As explained
by one of NVIDIA’s patents [28]. Power consumption can be
estimated by monitoring the activity of the different blocks
of the chip, giving them a weight based on the number of
gates they contain, sum all the values, low-pass filter them
then integrate over the refresh period of the power estimator.
This is very much like the approach explained in [26], where
performance counters were used to compute the power con-
sumption, except that it is done by the hardware itself. This
solution was introduced by NVIDIA in 2006, is explained in
patent [28] and is told to produce a power estimate every 512
clock cycles of an unspecified clock. In our case, it seems to be
the host clock, sourced by the PCIe port and usually running
at 277 MHz. Polling the power estimation register seems to
validate this theory as the refresh rate seems to be around 540
kHz.

NVIDIA’s method is thus very fast and cheap as it only
needs a small gate count increase on the GPU. Moreover, the
output of this method can be used internally to dynamically
adjust the clock of some engines to stay inside the power bud-
get. This technique is explained in the following subsection.

Unfortunately, on GPU families Fermi and newer, NVIDIA
stopped specifying the activity block weights which disables
power readings. It is still possible to specify them manually
to get the power reading functionality back. However, those
weights would have to be calculated experimentally.



C. FSRM: Dynamic clock frequency modulation

PTHERM’s role is also to keep the GPU in its power and
thermal budget. When the GPU exceeds any of its budgets, it
needs to react by lowering its power consumption. Lowering
the power consumption is usually done by reclocking the
GPU but full reclocking cannot be done automatically by the
hardware because it cannot calculate all the parameters and
follow the reclocking process on its own.

Letting the driver reclock the GPU when getting close to
overheating is acceptable and PTHERM can assist by sending
an IRQ to the driver when the temperature reaches a threshold.
However, in the case where the driver is not doing its job,
because it is locked up or because the driver is not loaded, the
chip should be able to regulate its temperature without being
forced to cut the power to the GPU.

In the case of meeting the power budget, reacting quickly
to an over-current is paramount to guarantee the safety of the
power supply and the stability of the system in general. It is
thus very important to be able to reclock often.

It is not possible to reprogram the clock tree and adjust the
voltage quickly enough to meet the 540 kHz update rate needed
for the power capping. However, the clock of some engines can
be slowed down. This will linearly affect the dynamic part of
the power consumption albeit not as power efficient as full
reclocking of the GPU because the voltage is not changed.

A simple way to lower the frequency of a clock is to divide
it by a power of two although the granularity is too coarse to
be used directly for the power capping capability. It is however
possible to lower the average clock frequency by sometimes
selecting the divided clock and then selecting the original clock
the rest of the time. For the lack of a better name, I decided to
call this frequency-modulation technique Frequency-Selection
Ratio Modulation (FSRM). FSRM can be implemented by
using the output of a Pulse-Width Modulator (PWM) to a one
bit multiplexer. When the output of the PWM is high, the
original clock is being used while the divided clock is used
when the output is low. Any average clock frequency between
the divided clock and the original clock is thus achievable by
varying the duty cycle of the PWM.

Figure 9 presents the expected frequency response of the
above system along with what has actually been measured
through the performance counters when tested on NVIDIA’s
hardware implementation. Judging by the differences, it seems
like NVIDIA also added a system to smooth the change
between the slowed and the normal clock. The difference
is also likely explained by the fact that the clock selection
may only happen when both the original and the divided
clock are rising. This also raises the problem of synchronising
the original and the divided clock as the divided clock has
to go through more gates than the original one. In order to
synchronise them, the original clock would have to be shifted
in time by adding redundant gates. This issue is known as
clock skew [29].

D. FSRM usage & configuration

FSRM is used to modulate PGRAPH clock’s frequency.
PGRAPH is the main engine behind 2D/3D acceleration and
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Figure 9. Frequency of the core clock (@408MHz, 16-divider) when varying
the FSRM

GPGPU, and probably responsible for most of the power
consumption.

There are several events that can trigger use of FSRM:

• PGRAPH idling;

• Temperature reaching one of the several thresholds;

• Power usage reaching its cap;

• Driver forcing FSRM.

Whenever one of these events happens, the divided clock
and the FSRM value get updated following to their associated
configuration. The clock divisor can be set to 1, 2, 4, 8 or
16 while the FSRM value can range from 0 (use the divided
clock all the time) to 255 (use the normal clock all the time).
However, even though each temperature threshold can specify
an independent clock divisor, they have to share the same
FSRM value.

Some preliminary tests have been performed on an nv84 to
lower the clock to the maximum when PGRAPH is idle and
this resulted in a about 20% power reduction of the computer
while the impact on the framerate of a video game was not
measurable. Some cards do not enable this feature by default,
possibly suggesting that it may lead to some instabilities. This
is however really promising and will be investigated further.

In the case of the power limiter, another mode can be
selected to automatically update the FSRM value. This allows
lowering the frequency of PGRAPH as little as possible in
order to stay within the power budget. This mode uses 2
hysteresis windows, one containing the other entirely. Each
window will increase the effective frequency (using FSRM)
whenever the power reading is below its low threshold and
decrease the effective frequency when the reading is above
its high threshold. The increase and decrease in FSRM values
are independent for both hysteresis windows and can be set
arbitrarily. However, the outer window is supposed to increase
or decrease the effective frequency rapidly while the inner
window is supposed to make finer adjustments.
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Figure 10. Example of the power limiter in the dual window mode

An example can be seen in figure 10 where the outer
window is set to [130W, 100W] while the inner window is set
to [120W, 110W]. The outer window will increase the FSRM
value by 20 when the power is lower than 100W and will
decrease it by 30 when the power is above 130W. The inner
window will increase the FSRM value by 5 when the power
is between 120 and 130W and will decrease it by 10 when the
power is between 100 and 110W. The FSRM value is limited
to the range [0, 255].

E. Power limiter on Fermi and newer

As no power reading is possible by default on GPUs of the
Fermi family and newer, the power limiter cannot be used. This
came to me as a surprise as NVIDIA started advertising the
power limitation on Fermi. This suggests that they may have
implemented another way of reading and lowering the power
consumption of their GPUs. I unfortunately do not have access
to such a card but the independent and proprietary tool GPU-
Z [30] proposes a way to disable this power cap, as can be
seen on figure 11.

Figure 11. Effect of disabling the power limiter on the Geforce GTX 580.
Copyrights to W1zzard from techpowerup.com.

The first spike would seem to suggest a very slow response
to exceeding the power budget. It is thus possible that NVIDIA
would use its driver to poll the voltage controller’s power

reading and decide to reclock the card to a lower performance
level. Since GPU-Z is proprietary, more reverse engineering
will be needed to understand and document this feature.

V. PDAEMON : AN RTOS EMBEDDED IN YOUR GPU

PDAEMON is an engine introduced on nva3, a late GPU
from the Tesla family. This engine is fully programmable using
the instruction set (ISA) FµC (Flexible MicroCode).

FµC was introduced in nv98 for PCRYPT, an engine meant
to offload some cryptographic operations. FµC was then reused
for PDAEMON and many more engines of the Fermi family.
This feature-rich ISA is now being used to implement some
of the interface between the host and the hardware of some
engines thus bringing a lot more flexibility to the hardware’s
interfaces with the host. An assembler has been written for
this ISA and is available under the name envyas in the
envytools repository [10]. An experimental Open Source FµC
compiler [31] has been developed by Shinpei Kato and his
research team for their needs. It is implemented as an LLVM
backend and will require some modifications in order to be
able to produce binaries for PDAEMON.

PDAEMON is an engine meant to offload some operations
usually performed by the host driver. It is clocked at 200 MHz,
has a memory management unit (MMU), has access to all the
registers of the GPU and direct access to PTHERM. It also
supports timers, interrupts and can redirect the interrupts from
the GPU to itself instead of the host. Several independent
communication channels with the host are also available.
Surprisingly, it also has performance counters to monitor
some engines’ activity along with its own. In other words,
PDAEMON is a fully-programmable “computer” with low-
latency access to the GPU that can perform more efficiently
whatever operation the host can do. However, it cannot perform
heavy calculations in a timely fashion because of its limited
clock frequency.

For more information about PDAEMON’s capabilities,
please read hwdocs/pdaemon.txt and all the files from hw-
docs/fuc/ found in the envytools repository [10].

A. Usages of PDAEMON

PDAEMON’s usage by NVIDIA has not been fully reverse-
engineered yet. However, the uploaded microcode contains the
list of the processes executed by the RTOS developed by or
for NVIDIA. Here are some of the interesting processes:

• Fan management;

• Power gating;

• Hardware scheduling (for memory reclocking);

• Power budget enforcement;

• Performance and system monitoring.

Its usage list could also be extended to cover:

• Parsing the VBIOS;

• Implementing full DVFS support;

• Generating power-usage graphs.



B. Benefits of using PDAEMON

PDAEMON has clearly been developed with the idea that
it should be able to do whatever the host system can do. One
of the practical advantages of using PDAEMON to implement
power management is that the CPU does not need to be woken
as often. This lowers the power consumption as the longer the
CPU is allowed to sleep, the greater the power savings are.

Another benefit of using PDAEMON for power manage-
ment is that, even when the host system has crashed, full power
management is still available. This has the benefit of checking
the thermal and power budget of the GPU while also lowering
the power consumption of crashed system.

VI. THE GPU AS AN AUTONOMIC-READY SYSTEM

In 2001, IBM proposed the concept of autonomic com-
puting [32] to aim for the creation of self-managing systems
as a way to reduce their usage complexity. The idea was
that systems are getting more and more complex and, as
such, require more knowledge from the technicians trying to
maintain them. By having self-managing systems, the user
could write a high-level policy that would be enforced by the
system itself, thus hiding complexity.

As an example, a modern NVIDIA GPU could perform the
following self-functions:

self-configuration: The GPU is responsible for finding a
configuration to fill the user-requested tasks.

self-optimization: Using performance counters, the GPU
can optimise performance and also lower its power consump-
tion by using DVFS.

self-healing: As the GPU can monitor its power consump-
tion and temperature, it can also react to destructive behaviours
by lowering the frequency of the clocks.

self-protection: Isolation between users can be provided
by the GPU (integrity and confidentiality) while availability
can be achieved by killing long-running jobs run by users.
The GPU can also store secrets like HDCP [33] keys or even
encrypt/decrypt data on the fly using PCRYPT.

Although the aim of autonomic computing is primarily
oriented towards lowering human maintenance cost, it can also
be extended to lower the development cost. By having self-
managing subsystems for non-functional features, integration
cost is lowered because of the reduced amount of development
needed to make it work on a new platform. Ideally, a complete
system could be assembled easily by using unmodified auto-
nomic subsystems and only a limited amount of development
would be needed to make their interfaces match.

This approach does not make sense in the IBM-PC-
compatible personal computer market as the platform has
barely evolved since its introduction in the way that com-
ponents interact (POST procedure, x86 processors and high
speed busses). This renders the development of drivers exe-
cuted on the CPU cheaper than having a dedicated processor
for the driver’s operations. However, in the System-On-Chip
(SoC) world where manufacturers buy IPs (intellectual prop-
erty blocks) and assemble them in a single-chip system, the
dedicated-processor approach makes a lot of sense as there is

no single processor ISA and operating system (OS) that the IP
manufacturer can depend on. In this context, the slimmer the
necessary driver for the processor and operating system, the
wider the processor and OS choice for the SoC manufacturer.

This is the approach that Broadcom chose for its Videocore
technology which is fully controllable by a clearly-documented
Remote Procedure Calls (RPC) interface. This allowed the
Raspberry Pi foundation to provide a binary-driver-free Linux-
based OS on their products [34]. However, the Open Source
driver only uses this RPC interface and is thus not a real driver
as it is just some glue code. This led the graphics maintainer
of Linux to refuse including this driver in Linux as the code
running in Videocore is still proprietary and bugs there are
unfixable by the community [35].

Broadcom’s Videocore is a good example of both the
advantages and the drawbacks of autonomic systems. Adding
support for it required very limited work by the Raspberry Pi
foundation but it also means the real driver is now a black
box running on another processor which cannot be traced,
debugged, or modified easily. From an open source operating
system point of view, it also means that it will become much
harder to study the hardware and propose new drivers. In the
case of NVIDIA, this situation could happen if PDAEMON’s
code was not readable and writable by the host system.

VII. CONCLUSION

In this paper, we have presented an overview of the
source of power consumption in modern processors along with
different techniques implemented by NVIDIA to lower it. We
also presented how different features available in the GPU
can be combined to improve its efficiency. It is my hope that
this article will spur more interest in the community to study,
document and improve on the current drivers to make them
more power-efficient.

Future work will focus on creating a stable reclocking
process across all the modern NVIDIA GPUs. This work will
allow us to implement a DVFS algorithm. More work will also
be done on power- and clock-gating which are the two main
power management features which have not been documented
yet.

ACKNOWLEDGMENT

The author would like to thank everyone involved in
graphics on Linux or other FLOSS operating systems for
laying out the foundations for the work done in Nouveau. I
would however like to thank in particular Marcin Kościelnicki
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