
Power and Performance Characterization and
Modeling of GPU-Accelerated Systems

Yuki Abe
Kyushu University

Fukuoka, Japan
abe@soc.ait.kyushu-u.ac.jp

Koji Inoue
Kyushu University

Fukuoka, Japan
inoue@ait.kyushu-u.ac.jp

Hiroshi Sasaki
Kyushu University

Fukuoka, Japan
sasaki@soc.ait.kyushu-u.ac.jp

Masato Edahiro
Nagoya University

Nagoya, Japan
eda@is.nagoya-u.ac.jp

Shinpei Kato
Nagoya University

Nagoya, Japan
shinpei@is.nagoya-u.ac.jp

Martin Peres
Laboratoire Bordelais de

Recherche en Informatique
Bordeaux, France

martin.peres@labri.fr

Abstract—Graphics processing units (GPUs) provide an
order-of-magnitude improvement on peak performance and
performance-per-watt as compared to traditional multicore
CPUs. However, GPU-accelerated systems currently lack a gen-
eralized method of power and performance prediction, which
prevents system designers from an ultimate goal of dynamic
power and performance optimization. This is due to the fact
that their power and performance characteristics are not well
captured across architectures, and as a result, existing power
and performance modeling approaches are only available for
a limited range of particular GPUs. In this paper, we present
power and performance characterization and modeling of GPU-
accelerated systems across multiple generations of architectures.
Characterization and modeling both play a vital role in optimiza-
tion and prediction of GPU-accelerated systems. We quantify the
impact of voltage and frequency scaling on each architecture with
a particularly intriguing result that a cutting-edge Kepler-based
GPU achieves energy saving of 75% by lowering GPU clocks in
the best scenario, while Fermi- and Tesla-based GPUs achieve
no greater than 40% and 13%, respectively. Considering these
characteristics, we provide statistical power and performance
modeling of GPU-accelerated systems simplified enough to be
applicable for multiple generations of architectures. One of our
findings is that even simplified statistical models are able to
predict power and performance of cutting-edge GPUs within
errors of 20% to 30% for any set of voltage and frequency
pair.

Keywords-GPUs, power, performance, characterization, mod-
eling.

I. INTRODUCTION

Graphics processing units (GPUs) are increasingly used as
a means of massively parallel computing. Even consumer
series of GPUs integrate more than 1, 500 processing cores
on a single chip and the peak double-precision performance
exceeds 1 TFLOPS while sustaining thermal design power
(TDP) in the same order of magnitude as traditional multicore
CPUs [21]. Current main applications of general-purpose
computing on GPUs (GPGPU) can be found in supercomput-
ing [26] but there are more and more emerging applications
in other areas. Examples include autonomous vehicles [17],
software routers [6], encrypted networks [11] and storage
systems [13, 25].

One of the grand challenges of GPU-accelerated systems
is power and performance optimization. GPUs bring signif-

icant advantages in “peak” performance and performance-
per-watt, but if some functional units are left unused during
operation, GPUs can waste non-trivial power and computing
resources. Voltage and frequency scaling may address this
problem. However, there is little work for how to predict power
and performance of GPU-accelerated systems based on given
voltage and frequency pair.

Problem Definition: Power and performance prediction
requires characterization and modeling of corresponding sys-
tems. Previous work on power and performance characteri-
zation and/or modeling [7, 8, 12, 14]–[16, 18, 23, 27] re-
stricted their attention to specific GPUs, and therefore it is
questionable if their results can be applied for other GPUs.
Most of these work also focus on processing core perfor-
mance, though they desire to be complemented by modeling
and scaling of memory performance. In order to develop a
generalized method of power and performance prediction for
GPU-accelerated systems, characterization and modeling must
be performed on multiple generations of architectures.

Contribution: This paper presents power and performance
characterization and modeling of GPU-accelerated systems
based on multiple generations of architectures. We first char-
acterize the architectural impact of voltage and frequency
scaling on execution time and power consumption, followed by
providing statistical power and performance modeling of GPU-
accelerated systems. These characterization and modeling both
play a vital role in prediction and optimization of power
and performance. To the best of our knowledge, this paper
is the first scientific evidence beyond vendor’s specification
sheets that successfully characterizes power and performance
of GPU-accelerated systems across multiple generations of
architectures, and derives a unified form of statistical model
to predict their power and performance.

Organization: The rest of this paper is organized as fol-
lows. Section II presents the platform, upon which we explore
power and performance characterization and modeling. Sec-
tion III characterizes impact of voltage and frequency scaling
on minimized energy of GPU-accelerated systems using four
different GPUs. Section IV provides statistical modeling of
their power and performance. Related work are discussed in

TABLE I
SPECIFICATIONS OF THE NVIDIA GPUS.

GPU GTX 285 GTX 460 GTX 480 GTX 680
Architecture Tesla Fermi Fermi Kepler
of processing cores 240 336 480 1536
Peak performance (GFLOPS) 933 907 1350 3090
Memory bandwidth (GB/sec) 159.0 115.2 177.0 192.2
TDP (Watt) 183 160 250 195
Core frequency (MHz) 600, 800, 1296 100, 810, 1350 100, 810, 1400 648, 1080, 1411
Memory frequency (MHz) 100, 300, 1284 135, 324, 1800 135, 324, 1848 324, 810, 3004

Section V. We provide concluding remarks of this paper in
Section VI.

II. PLATFORM

We use four different NVIDIA graphics cards (GeForce
GTX 285, 460, 480 and 680) with an Intel Core i5 2400
processor. The operating system is Linux kernel v3.3.0. GPU
programs are all written in the Compute Unified Device
Architecture (CUDA) programming language [22].

A. GPU Architecture
This paper focuses on the NVIDIA GPU architectures:

Tesla, Fermi and Kepler [19, 21]. Among these different
generations of architectures, we explore four representative
GPUs of the GeForce consumer series: (i) Tesla-based GTX
285, (ii) Fermi-based GTX 460, (iii) Fermi-based GTX 480
and (iv) Kepler-based GTX 680. There are two Fermi-based
GPUs selected because we aim to characterize a difference
within the same architecture as well as that among different
architectures.

TABLE I illustrates specifications of the four GPUs. They
are diverse in the number of processing cores, peak perfor-
mance, memory bandwidth, TDP and operating frequency. In
the rest of this section, we provide an overview of the GPU
architectures in consideration.

Tesla: The Tesla architecture is an initial form of GPU
technology designed for unified graphics and parallel com-
puting. It introduces the basic functionality of CUDA such as
unified shaders, multithreading, shared memory, and barrier
synchronization. However it lacks hierarchical caches and
there is some architectural limit on the memory size, ECC
support, double-precision performance and so on. We use this
architecture to observe how GPUs have been improved in
power and performance through the Fermi and the Kepler
architectures.

Fermi: The Fermi architecture is a significant leap forward
in GPU architecture. It overcomes drawbacks of the Tesla
architecture while succeeding the architectural baseline. No-
table advances with respect to power and performance include
hierarchical caches and a larger number of processing cores.
Comparing the Fermi and the Tesla architectures, one can
discuss implication of the presence of L1/L2 caches and the
scalability of processing cores.

Kepler: The Kepler architecture is the current (as of 2013)
state of the art of NVIDIA GPU technology. This is an
enhanced and generalized version of the Fermi architecture
while introducing more efficient multithreading support. From
application points of view, a Kepler GPU looks like an

impressively giant Fermi GPU. This engineering innovation
brought significant improvements in performance-per-watt, as
shown in TABLE I.

B. System Software

We use NVIDIA’s proprietary software [20] including the
device driver, runtime library and compiler. Since this software
package does not provide a system interface to scale power
and performance (voltage and frequency) levels of GPUs, we
modify the BIOS image of the target GPU, which is embedded
in the device driver’s binary code, forcing the GPU to be
booted at the specified power and performance levels. This
method allows us to choose a pre-defined configurable set
of the GPU core and memory clocks listed in TABLE I
where voltage is implicitly adjusted with frequency changes.
Interested readers for this open method are encouraged to visit
the software repository of Gdev [13] and find documentations
about voltage and frequency scaling of NVIDIA GPUs.

C. Experimental Equipment

We use the Yokogawa Electric Corporation’s WT1600 dig-
ital power meter [3] for the measurement of power consump-
tion. This instrument obtains voltage and electric current every
50ms from the power outlet of the machine. Power con-
sumption is calculated by multiplying the voltage and current,
whereas energy consumption is derived by accumulation of
power consumption. The measurement is focused on power
and energy of the entire system but not on those of individual
CPUs and GPUs because our focus is on the system-wide
study. There are also equipment constraints that prevent us
from measuring power consumption of the GPU alone as its
power is directly supplied from the power supply and also
from the PCI bus.

D. Target Workload

The benchmarks used in our experiments include Ro-
dinia [2] and Parboil [24] which are popular benchmark suites
for GPGPU studies. We execute each benchmark program
with the maximum feasible input data size. We also use the
CUDA SDK code samples [22] and basic matrix operation
programs with large input data size. TABLE II lists all the
benchmarks. For such a program that has an execution time
less than 500ms, we modify the code to repeat the computing
kernel of the program until the execution time reaches 500ms
in order to obtain at least 10 sample points given that the
minimum time range of the power meter we use in this paper
is 50ms. All the test programs are compiled using the NVIDIA
CUDA Compiler (NVCC) v4.2 [20].

TABLE II
LIST OF BENCHMARKS

Suite Application name
backprop, bfs, cfd, gaussian, heartwall, hotspot

Rodinia
kmeans, lavaMD, leukocyte, mummergpu, lud, nn, nw

particlefilter float, pathfinder
srad v1, srad v2, streamcluster

Parboil
cutcp, histo, lbm, mri-gridding

mri-q, sad, sgemm, spmv, stencil, tpacf

CUDA SDK
binomialOptions, BlackScholes, concurrentKernels

histogram64, histogram256, MersenneTwister
Matrix MAdd, MMul, MTranspose

TABLE III
CONFIGURABLE FREQUENCY COMBINATIONS.

GTX 285 GTX 460 GTX 480 GTX 680
Core-H, Mem-H

√ √ √ √

Core-H, Mem-M
√ √ √ √

Core-H, Mem-L
√ √ √ √

Core-M, Mem-H
√ √ √ √

Core-M, Mem-M
√ √ √ √

Core-M, Mem-L
√ √ √ √

Core-L, Mem-H
√

– –
√

Core-L, Mem-M
√

– – –
Core-L, Mem-L –

√ √
–

III. POWER AND PERFORMANCE CHARACTERIZATION

In this section, we characterize power and performance
behavior of GPU-accelerated systems to play a vital role in
optimization and prediction of GPU-accelerated systems. This
characterization is essential to derive power and performance
models. We perform an extensive set of experiments using
the benchmarks presented in Section II-D. The processing
core and memory clocks of GPUs are scaled individually
according to the configurable frequency combinations pre-
defined by the NVIDIA specifications, which are summarized
in TABLE III. These combinations are abbreviated using
the following notation: Core/Mem-H, -M, and -L denote the
high, medium and low frequencies of the processing core
and memory, respectively, corresponding to TABLE I. For
example, (Core-H, Mem-L) of GTX 285 sets the core and
memory frequencies to 1296MHz and 100MHz, respectively.
Note that frequency pairs depend on each GPU.

The goal of this section is to derive appropriate frequency
pairs for each benchmark and GPU that minimize energy.
Prior work [12] showed that the total energy consumption of
the system can be reduced by slowing down the processing
core frequency for memory-intensive workloads or vice versa,
which is clearly the most intuitive policy of selecting the
frequency pairs. A similar approach is studied well for CPUs
where the processor frequency is scaled down for memory-
intensive workloads by dynamically capturing the last level
cache miss ratio [9, 10].

We first conduct a similar study to check whether we can
observe the same tendency among the three generations of
GPUs. Due to space constraints, we herein present only the
selected results of benchmarking. Fig. 1 shows the perfor-
mance and the power efficiency, i.e., reciprocal of the energy
consumption of Backprop which we choose to showcase
as an example of compute-intensive workload. The x-axis
of each figure represents the processing core frequency and
different lines in the figure correspond to different memory

frequencies. It clearly explains that this benchmark is compute-
intensive for all the generations of GPUs. The power grows
linearly according to the x-axis while the performance remains
constant across each line. The best power efficiency for
GTX 285, GTX 460 and GTX 480 is achieved by (Core-H,
Mem-L), while that of GTX 680 is provided with (Core-M,
Mem-L). The improvements compared to (Core-H, Mem-H),
which is the default setting, in power efficiency are 13%,
39%, 40% and 75% for GTX 285, GTX 460, GTX 480
and GTX 680, respectively, where the performance losses
are limited to 2%, 2%, 0.1% and 30%, respectively. Lessons
learned from this evaluation are that (i) energy consumption
can be successfully reduced while retaining little performance
degradation on state-of-the-art GPUs and (ii) even if a program
is compute-intensive, minimized energy is not obtained by
simply lowering the memory frequency to the lowest level.

We next focus on memory-intensive workload and inves-
tigate if power efficiency can be improved with minimal
performance degradation like Backprop. Fig. 2 shows the
performance and the power efficiency of Streamcluster
which is one of the most memory-intensive benchmarks used
in this paper. Albeit memory-intensive workload, performance
improves when increasing the processing core frequency for
the “Mem-H” configurations. On the other hand, the “Mem-
M” and “Mem-L” exhibit constant performance regardless
of the processing core frequency. Because of this nature,
power efficiency cannot necessarily be improved by reducing
the processing core frequency when the memory frequency
is set to “Mem-M” or “Mem-L”. It is interesting to see
that GTX 680 can improve power efficiency by 4.7% with
performance degradation of 8.7% using the (Core-M, Mem-H)
pair. This means that lowering the processing core frequency
for memory-intensive workload is effective to reduce energy
on GTX 680.

So far we have studied power and performance of heav-
ily compute- or memory-intensive workload. However other
benchmarks likely show more complicated power and perfor-
mance characteristics with respect to the processing core and
memory frequencies. For example, such behavior can be seen
in Gaussian as shown in Fig. 3. It behaves as compute-
bound and memory-bound at different frequency levels and
for different GPUs. Even if we compare the same-generation
GPUs, i.e., GTX 460 and GTX 480, the power efficiency
characteristics differ such that the best configuration is not
identical between them, which implies that it is not straight-
forward to predict an optimal core and memory frequency
pair. This observation encourages and raises the need of work
on modeling the power and performance of GPU-accelerated
systems. We present our statistical modeling approach in
Section IV.

We now provide an insight of how the power and per-
formance differ among different generations of GPUs and
discuss the growing importance of cooperatively choosing the
processing core and memory frequencies. TABLE IV summa-
rizes the configurations achieving the best power efficiency
for each benchmark and GPU. Note that it includes all the
benchmarking results while most of them are excluded in
Figures 1 through 3. The abbreviation in the parenthesis denote
the best performing processing core and memory frequency

 0
 0.5

 1
 1.5

 2
 2.5

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX285 Backprop

Mem-H
Mem-M
Mem-L

 0
 2
 4
 6
 8

 10
 12
 14

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX460 Backprop

Mem-H
Mem-M
Mem-L

 0
 2
 4
 6
 8

 10
 12
 14

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX480 Backprop

Mem-H
Mem-M
Mem-L

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX680 Backprop

Mem-H
Mem-M
Mem-L

 0
 0.5

 1
 1.5

 2
 2.5

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX285 Backprop

Mem-H
Mem-M
Mem-L

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX460 Backprop

Mem-H
Mem-M
Mem-L

 0
 1
 2
 3
 4
 5
 6
 7

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX480 Backprop

Mem-H
Mem-M
Mem-L

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX680 Backprop

Mem-H
Mem-M
Mem-L

Fig. 1. Performance and power efficiency of Backprop.

 0
 2
 4
 6
 8

 10
 12

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX285 Streamcluster

Mem-H
Mem-M
Mem-L

 0
 2
 4
 6
 8

 10
 12

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX460 Streamcluster

Mem-H
Mem-M
Mem-L

 0
 2
 4
 6
 8

 10
 12

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX480 Streamcluster

Mem-H
Mem-M
Mem-L

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX680 Streamcluster

Mem-H
Mem-M
Mem-L

 0
 1
 2
 3
 4
 5
 6
 7

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX285 Streamcluster

Mem-H
Mem-M
Mem-L

 0
 1
 2
 3
 4
 5
 6
 7

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX460 Streamcluster

Mem-H
Mem-M
Mem-L

 0
 1
 2
 3
 4
 5
 6

 0 200 400 600 800 1000 1200 1400 1600
N

or
m

al
iz

ed
 P

ow
er

 E
ffi

ci
en

cy
Core frequency [MHz]

GTX480 Streamcluster

Mem-H
Mem-M
Mem-L

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX680 Streamcluster

Mem-H
Mem-M
Mem-L

Fig. 2. Performance and power efficiency of Streamcluster.

 0
 2
 4
 6
 8

 10
 12

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX285 Gaussian

Mem-H
Mem-M
Mem-L

 0
 2
 4
 6
 8

 10
 12

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX460 Gaussian

Mem-H
Mem-M
Mem-L

 0
 2
 4
 6
 8

 10
 12
 14

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX480 Gaussian

Mem-H
Mem-M
Mem-L

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 200 400 600 800 1000 1200 1400 1600N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Core frequency [MHz]

GTX680 Gaussian

Mem-H
Mem-M
Mem-L

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX285 Gaussian

Mem-H
Mem-M
Mem-L

 0
 1
 2
 3
 4
 5
 6
 7

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX460 Gaussian

Mem-H
Mem-M
Mem-L

 0
 1
 2
 3
 4
 5
 6

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX480 Gaussian

Mem-H
Mem-M
Mem-L

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600

N
or

m
al

iz
ed

 P
ow

er
 E

ffi
ci

en
cy

Core frequency [MHz]

GTX680 Gaussian

Mem-H
Mem-M
Mem-L

Fig. 3. Performance and power efficiency of Gaussian.

pair. Because (H-H) is the default setting, we highlight other
configurations by the bold font in the table. It is very inter-
esting to see that (H-H) achieves the best power efficiency for
almost all benchmarks for GTX 285. However, we can see that
the best pair becomes more diverse as the generation proceeds,
and surprisingly for GTX 680, the best power efficiency for all
the benchmarks are achieved besides the default configuration.
This characteristic explains that processor and memory voltage
and frequency scaling is a useful approach to minimizing
energy of GPU-accelerated systems in the current state of the
art.

Fig. 4 shows the power efficiency improvement (i.e., energy
reduction) that can be achieved by selecting the best config-
uration over the default (H-H) configuration. For GTX 285,
only four out of 17 benchmarks need different configurations
beside (H-H) for the best power efficiency, and only 0.8%
improvement can be achieved by optimal selections. For Fermi
GPUs, we can perform much better than GTX 285 where

12.3% and 12.1% improvements are achieved for GTX 460
and GTX 480, respectively. When it comes to the latest
GTX 680, the efficiency improvement reaches 24.4% on av-
erage, where the improvements for six benchmarks (LavaMD,
Pathfinder, SRAD, sad, sgemm and spmv) exceed 40%.
To summarize, we have shown that energy optimization of
GPUs is very challenging, given the factors of hardware design
knobs which are core and memory frequency pairs and also
the characteristics of the workloads.

IV. STATISTICAL MODELING

A. Model Construction:

We now provide statistical power and performance modeling
of GPU-accelerated systems based on the characterization
presented in Section III. The goal of this modeling is to predict
power and performance behavior across multiple generations
of architectures with various processing core and memory
frequency pairs.

TABLE IV
THE BEST FREQUENCY PAIRS FOR POWER EFFICIENCY.

Benchmarks GTX 285 GTX 460 GTX 480 GTX 680

Rodinia (Core frequency-Memory frequency)
Backprop (H-L) (H-L) (H-L) (M-L)

BFS (M-H) (H-H) (H-H) (M-H)
CFD (H-H) (H-H) (H-H) (M-M)

Gaussian (H-H) (H-H) (H-M) (M-H)
Heartwall (H-H) (H-M) (H-M) (L-H)
Hotspot (H-H) (H-L) (H-L) (M-L)
Kmeans (H-H) (H-H) (M-M) (M-M)
LavaMD (H-H) (H-L) (H-M) (H-L)

Leukocyte (H-H) (H-L) (H-L) (H-M)
LUD (H-H) (H-M) (H-M) (L-H)

MUMmerGPU (H-H) (H-H) (H-H) (M-H)
NN (H-H) (H-M) (H-L) (H-L)
NW (H-H) (H-M) (H-M) (L-H)

Particlefilter (H-M) (H-L) (H-L) (H-L)
Pathfinder (H-M) (H-M) (H-M) (H-M)

SRAD (H-H) (H-H) (H-H) (L-H)
Streamcluster (H-H) (H-H) (H-H) (M-H)

Parboil (Core frequency-Memory frequency)
cutcp (H-H) (H-M) (H-L) (H-H)
histo (H-H) (H-H) (M-M) (H-H)
lbm (H-H) (H-H) (M-H) (M-H)

mri-gridding (M-M) (H-L) (M-M) (M-M)
mri-q (H-H) (H-L) (H-L) (M-H)
sad (H-H) (H-H) (H-H) (M-M)
sgemm (H-H) (H-M) (M-M) (H-M)
spmv (H-H) (H-L) (H-L) (M-H)

stencil (H-H) (H-H) (H-H) (H-H)
tpacf (H-L) (H-M) (H-M) (H-M)

CUDA SDK (Core frequency-Memory frequency)
binomialOptions (H-L) (H-L) (H-H) (M-M)
BlackScholes (H-H) (H-H) (H-H) (M-H)

concurrentKernels (L-M) (L-L) (L-L) (M-M)
histogram256 (H-H) (M-M) (H-M) (M-M)
histogram64 (H-H) (H-M) (M-M) (H-M)

MersenneTwister (L-M) (H-H) (H-H) (M-H)

Our statistics-based approach uses multiple linear regression
where power and performance are used as dependent variables
while the statistical data obtained via performance counters
are used as independent variables. We leverage the results
of Section III in coordination with the performance counter
information obtained by the CUDA Profiler v2.01.∗ Different
from any other prior work, we propose a unified model which
incorporates the frequencies of both core and memory into
the prediction equation such that a single model for each
GPU allows to predict power and performance for any given
frequency pair.

We construct models of power and performance individually
for all the evaluated GPUs where we can examine whether the
accuracy and contributing performance counters differ among
GPUs. Note that the types and the number of performance
counters depend on each GPU architecture: 32 counters for
GTX 285, 74 counters for GTX 460 and GTX 480, and 108
counters for GTX 680. All the benchmark programs shown
in TABLE II except for three (mummergpu, backprop and
pathfinder) from Rodinia and one (bfs) from Parboil,
which failed to be analyzed by the CUDA Profiler, are used

∗We did not use emulation techniques (e.g., GPU Ocelot [4]) although
they provide different statistics from performance counters; it requires too
much time to complete all the benchmarks we have evaluated. Recent advances
in instrumentation techniques (e.g., Lynx [5]) can overcome this issue and
using them for analysis is left for future work.

0

10

20

30

40

50

60

70

80

Ba
ck

pr
op

BF

S

C

FD

G
au

ss
ia

n

H

ea
rtw

al
l

H
ot

sp
ot

Km
ea

ns

La
va

M
D

Le
uk

oc
yt

e

LU

D

M

U
M

m
er

G
P

N
N

N
W

Pa
rti

cl
efi

lte
r

Pa
th

fin
de

r

SR

AD

St
re

am
cl

us
te

r

cu
tc

p

hi

st
o

lb
m

m
ri-

gr
id

di
ng

m

ri-
q

sa
d

sg
em

m

sp
m

v

st

en
ci

l

tp

ac
f

bi
no

m
ia

lO
pt

io
ns

Bl

ac
kS

ch
ol

es

co
nc

ur
re

nt
Ke

rn
el

s

hi

st
og

ra
m

25
6

hi
st

og
ra

m
64

M

er
se

nn
eT

w
is

te
r

Po
w

er
 e
ffi

ci
en

cy
　

im
po

rv
em

en
t [

%
]

GTX285

0

10

20

30

40

50

60

70

80

Ba
ck

pr
op

BF

S

C

FD

G
au

ss
ia

n

H

ea
rtw

al
l

H
ot

sp
ot

Km
ea

ns

La
va

M
D

Le
uk

oc
yt

e

LU

D

M

U
M

m
er

G
P

N
N

N
W

Pa
rti

cl
efi

lte
r

Pa
th

fin
de

r

SR

AD

St
re

am
cl

us
te

r

cu
tc

p

hi

st
o

lb
m

m
ri-

gr
id

di
ng

m

ri-
q

sa
d

sg
em

m

sp
m

v

st

en
ci

l

tp

ac
f

bi
no

m
ia

lO
pt

io
ns

Bl

ac
kS

ch
ol

es

co
nc

ur
re

nt
Ke

rn
el

s

hi

st
og

ra
m

25
6

hi
st

og
ra

m
64

M

er
se

nn
eT

w
is

te
r

Po
w

er
 e
ffi

ci
en

cy
　

im
po

rv
em

en
t [

%
]

GTX460

0

10

20

30

40

50

60

70

80

Ba
ck

pr
op

BF

S

C

FD

G
au

ss
ia

n

H

ea
rtw

al
l

H
ot

sp
ot

Km
ea

ns

La
va

M
D

Le
uk

oc
yt

e

LU

D

M

U
M

m
er

G
P

N
N

N
W

Pa
rti

cl
efi

lte
r

Pa
th

fin
de

r

SR

AD

St
re

am
cl

us
te

r

cu
tc

p

hi

st
o

lb
m

m
ri-

gr
id

di
ng

m

ri-
q

sa
d

sg
em

m

sp
m

v

st

en
ci

l

tp

ac
f

bi
no

m
ia

lO
pt

io
ns

Bl

ac
kS

ch
ol

es

co
nc

ur
re

nt
Ke

rn
el

s

hi

st
og

ra
m

25
6

hi
st

og
ra

m
64

M

er
se

nn
eT

w
is

te
r

Po
w

er
 e
ffi

ci
en

cy
　

im
po

rv
em

en
t [

%
]

GTX480

0

10

20

30

40

50

60

70

80

Ba
ck

pr
op

BF

S

C

FD

G
au

ss
ia

n

H

ea
rtw

al
l

H
ot

sp
ot

Km
ea

ns

La
va

M
D

Le
uk

oc
yt

e

LU

D

M

U
M

m
er

G
P

N
N

N
W

Pa
rti

cl
efi

lte
r

Pa
th

fin
de

r

SR

AD

St
re

am
cl

us
te

r

cu
tc

p

hi

st
o

lb
m

m
ri-

gr
id

di
ng

m

ri-
q

sa
d

sg
em

m

sp
m

v

st

en
ci

l

tp

ac
f

bi
no

m
ia

lO
pt

io
ns

Bl

ac
kS

ch
ol

es

co
nc

ur
re

nt
Ke

rn
el

s

hi

st
og

ra
m

25
6

hi
st

og
ra

m
64

M

er
se

nn
eT

w
is

te
r

Po
w

er
 e
ffi

ci
en

cy
　

im
po

rv
em

en
t [

%
]

GTX680

Fig. 4. Power efficiency improvement with the best configuration.

as modeling samples. We finally obtain 114 samples in total
by changing the size of inputs for each benchmark. We use
the forward selection method to find an “optimal” model that
maximizes the adjusted coefficient of determination (R̄2) by
allowing at most 10 independent variables to be used. We have
tried using 15 and 20 variables instead of 10 and confirmed
that the R̄2 values almost does not improve when increasing
the number of independent variables beyond 10. The details
of the proposed power and performance models are described
in the following.

Power Modeling: Previous study has shown that reasonable
estimation is possible using multiple linear regression for a
single frequency pair (core and memory) [18]. We propose
a unified model which demonstrates high estimation accuracy
for any frequency pairs. In order to incorporate the information
of operating frequency into a single equation, we need to
consider that an access to a certain component consumes dif-
ferent amount of energy when operating at different frequency
levels. We account for this phenomenon by categorizing the
performance counters into two groups: core-event or memory-
event, whose power consumption associated with the event
depends on the core or memory frequency, respectively.†
Each value of performance counter grouped as core-event is
multiplied by the core frequency (i.e., the faster the frequency,
the more power consumed for each access), and the same is

†We do not show what counters are classified into which group because of
space limitations. In general, core-events are the events which happen within
the core where memory-events are un-core events such as memory accesses.

TABLE V
R̄2 OF THE POWER MODEL.

GTX 285 GTX 460 GTX 480 GTX 680
0.30 0.59 0.70 0.18

TABLE VI
R̄2 OF THE PERFORMANCE MODEL.

GTX 285 GTX 460 GTX 480 GTX 680
0.91 0.90 0.94 0.91

done for the memory-event. Therefore, the statistical model
for predicting power consumption is formed as:

power =

Nc∑
i=1

xici · corefreq+

Nm∑
j=1

yjmj ·memfreq+z (1)

where power denotes the dependent variable (power consump-
tion), ci (1 ≤ i ≤ Nc) and mj (1 ≤ j ≤ Nm) are the per-
second scale performance counter values (in order to predict
the average W of the program [18]), xi, yi and z are the model
coefficients.

Performance Modeling: On the performance prediction
side the model also incorporates the frequencies like the power
model but in a slightly different manner. Categorization of
the events are the same, however, each value of performance
counter grouped as core-event is divided (not multiplied) by
the core frequency (i.e., the faster the frequency, the shorter
the latency associated with the event), and the same is done
for the memory-event. After all, the performance prediction
model is formed as:

exectime =

Nc∑
i=1

xi
ci

corefreq
+

Nm∑
j=1

yj
mj

memfreq
+ z (2)

where exectime denotes the dependent variable (total exe-
cution time), ci (1 ≤ i ≤ Nc) and mj (1 ≤ j ≤ Nm)
are the performance counter values (here we use the values
from the total run which is similar in spirit with the work by
Hong et al. [7, 8]) grouped as core-event and memory-event,
respectively, corefreq is the core frequency, memfreq is the
memory frequency, xi, yj and z are the model coefficients.

Note that in contrast to previous studies [1, 7, 23] which
required expert knowledge of GPU architectures and built
complicated performance models, we attempt to build a sta-
tistical model with only a minimum knowledge of workload
characteristics. One contribution of this study is that it shows
the limitation of multiple linear regression when applied for
performance modeling.

B. Model Evaluation:
Tables V and VI show the R̄2 values of the obtained power

and performance models for each GPU. We can see that the
variations of the R̄2 values for the power model is huge (0.18
to 0.70) where that of the performance model is small with
significant high values (0.90 to 0.94). It is somewhat counter
intuitive to see that the performance model achieves a much
higher R̄2 values than the power model because previous study
has shown that the power consumption can be reasonably
predicted with multiple linear regression [18]. However, the

TABLE VII
AVERAGE PREDICTION ERROR OF THE POWER MODEL.

GTX 285 GTX 460 GTX 480 GTX 680
Error[%] 15.0 14.0 18.2 23.5
Error[W] 20.1 15.2 24.4 23.7

TABLE VIII
AVERAGE PREDICTION ERROR OF THE PERFORMANCE MODEL.

GTX 285 GTX 460 GTX 480 GTX 680
Error[%] 67.9 47.6 39.3 33.5

obtained result is not different from theirs which means that
the power prediction model can be used in a real system with
small errors as we will show in the following paragraph.

Fig. 5 and Fig. 6 exhibit errors in prediction using our statis-
tical power and performance models for each GPU. Tables VII
and VIII complement these figures by showing the average
value of the absolute errors in percentage for each model.
TABLE VII also shows that of errors in Watts. As discussed
earlier, even though the values of R̄2 for the power model is
inferior to that of the performance model, the overall trend
of results implies that the power model is accurate enough to
cap errors in prediction. This is attributed to the fact that the
variations of power consumption are limited within 100W for
each GPU in contract to the execution time, which varies from
hundreds of milliseconds to tens of seconds. Mathematically a
small variation of the target estimate leads to a small value of
the adjusted coefficient of determination. Thus, a small value
of R̄2 does not necessarily mean that the model is inaccurate.
In fact, the errors in prediction generated from our power
model are no greater than 20.1W, 15.2W, 24.4W and 23.7W
for GTX 285, 460, 480 and 680, respectively, though the model
seems somewhat inaccurate at the first glance according to the
values of R̄2.

However, it can be observed that the prediction accuracy is
lower for newer generation GPUs. Building a more sophisti-
cated model to improve the accuracy is left for future work.
In contrast to the power model, errors in prediction generated
from our performance model are more significant as shown in
Fig. 6 and TABLE VIII, despite of its very high values of R̄2.
The x-axis shows benchmark sorted independently for each
GPU. In fact, this result is expected in a sense that the vari-
ations of the execution time widely ranges from milliseconds
to tens of seconds and such a larger variation of the target
estimate leads to a smaller value of the adjusted coefficient
of determination. However, the result is still encouraging in
the following: (i) even when using a simple linear model
presented in this paper, the values of R̄2 can reach greater
than 0.90 for all GPUs, and (ii) it can be clearly seen that
the errors in prediction are becoming smaller as a generation
of the GPU architecture proceeds. We believe that this is due
to an increased number of available performance counters in
recent architectures and the enhanced microarchitecture can
also remove unpredictable behaviors present in old GPUs. The
above discussion leads to a conclusion that the performance
of future lines of GPUs will be more predictable even under
simple statistical models while the power model needs further

-100

-50

 0

 50

 100

E
rr

or
 [%

]

GTX285

-100

-50

 0

 50

 100

E
rr

or
 [%

]

GTX460

-100

-50

 0

 50

 100

E
rr

or
 [%

]

GTX480

-100

-50

 0

 50

 100

E
rr

or
 [%

]

GTX680

Fig. 5. Errors in prediction of the power model (by distribution over all benchmarks).

-100

-50

 0

 50

 100

E
rr

or
 [%

]

GTX285

-100

-50

 0

 50

 100

E
rr

or
 [%

]

GTX460

-100

-50

 0

 50

 100

E
rr

or
 [%

]

GTX480

-100

-50

 0

 50

 100

E
rr

or
 [%

]

GTX680

Fig. 6. Errors in prediction of the performance model (by distribution over all benchmarks).

●

●

●

●
●

●

●

●
●
●

●

●

●
●
●
●
●

●

●●●
●

●

●

●

●

●

●

●
●●
●●
●
●
●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●
●●
●
●
●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●
●●
●
●
●●●●

●

●

●

●

●

●

●●●

●●●
●
●

●

●●●

●

●
● ●●

●

●

●
● ●●●

●

●
●

●

●
●

●
●

●
●

●●
●

●

●

●

●
●●
●●

●
●
●●
●
●
●

●

●
●
●●●
●
●●●
●

●

●

●●

●

●

●

●
●
●
●●●
●
●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●
●
●

●

●

●●●●

●

●

●

●

Fig. 7. Impact of explanatory variables on the power model.

improvement as the hardware becomes more power efficient.
This paper contributes significantly to this novel finding.

Overall, we find that even simplified statistical models are
able to predict power and performance of advanced GPU-
accelerated systems (i.e., NVIDIA’s Kepler) within errors of
20% to 30% for any set of voltage and frequency pair and
for any workload. In fact, more than half of the workloads
in Fig. 5 and Fig. 6 exhibit prediction errors less than 20%
for power and performance on all the evaluated GPUs. This
means that even simplified statistics are very powerful to
predict power and performance of GPU-accelerated systems,
though depending on the workload. Our future work is to
validate the proposed power performance models by targeting
multiple GPU microarchitectures as NVIDIA’s Kepler and
AMD’s Radeon.

As aforementioned, we use 10 explanatory variables to
evaluate our power and performance models. For reference, we
also evaluate our models using 5 to 20 explanatory variables
as shown in Fig. 7 and Fig. 8. The x-axis shows the number

●●●

●●●

●●●

●
●

●●●●

●

●●●

●●●

●●●

●●●

●
●

●●

●

●●

●

●●●

●●

●

●

●●

●

●
●
●●
●

●●

●●

●

●●

●

●●
●

●●

●

●●

●●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●●

●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●

●●●

●

●

●

●

●

●●●

●●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●●
●

●

●
●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Fig. 8. Impact of explanatory variables on the performance model.

of explanatory variables. We can see that our configuration
of using 10 variables gives reasonable prediction accuracy for
both power and performance prediction.

Fig. 9 and Fig. 10 show the box and whisker plots of the
error distributions for the proposed model on the right hand
side along with models constructed for each frequency pair
(e.g., Core-High Mem-High) in order to understand the effec-
tiveness of the unified model. In general, the slight difference
between each model versus our unified model show that even
though both the power and performance prediction models
become more accurate when optimized for each frequency
pair, the proposed model exhibits its advantage of a simple and
a uniform model. As discussed earlier, Fig. 9 shows that the
power model is highly accurate when tied to a single model,
which is also confirmed by the previous work by Nagasaka
et al. [18]. As TABLE VIII showed, it can be seen that the
accuracy for the performance model improves as the GPU
generation proceeds. We can see that the accuracy comes from
not some specific frequency pair but is the overall trend of each

●

●

●

●
●●●

●

●
●

●

●

●

●

●●
●●●

●

●

●
●●●
●
●●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●●
●●
●
●
●
●●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●●●
●●

●●

●

●●●●

●●

●

●

●●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●●●
●●

●●●●●
●
●●

●

●

●

●

●

●

●●

●
●●
●

●●

●

●

●●

●

●
●

●●

●

●

●●●

●
●

●●
●

●

●
●●

●

●●

●●

●
●●

●

● ●
●●●●●

●

●●

●

●

●

●

●●●

●●

●

●

●

●●●
●

●

●

●
●

●
●
●●
●
●●●

●

●

Fig. 9. Impact of GPU clocks on the power model.

GPU. Surprisingly, some models show very wide variations
even when optimized for each configuration. It can be seen that
the unified model can incorporate them to perform a reason-
able prediction. An important finding is that the applied simple
multiple linear regression is effective in constructing accurate
models even by unifying all the frequency pairs into a single
model for all the GPU architectures. This fact suggests that
statistical modeling continues as a promising approach which
does not require in-depth understanding (which is sometimes
impossible because of the black-box nature of GPUs) of the
architecture itself (which was required in some of the previous
studies [7, 8]).

Finally, Fig. 11 shows breakdown of the impact of influence
from selected explanatory variables. Detailed explanations of
these explanatory variables are outside the scope of this paper,
though this breakdown evidence that there are at most 10 to
15 variables that really influence power and performance of
GPU-accelerated systems. We believe that it is fairly realistic
to select 10 to 15 variables at runtime to dynamically predict
power and performance of GPU-accelerated systems.

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●●

●

●

●●

●

●
●●

●

●

●
●

●●

●

●

●

●●●●●●●

●
●
●
●

●

●

●

●●

●●
●

●●

●

●●

●

●●

●

●

●

●●

●

●
●
●●
●

●●

●●

●

●●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●
●
●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●

●

●

●
●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Fig. 10. Impact of GPU clocks on the performance model.

V. RELATED WORK

Hong et al. developed an integrated power and performance
model for NVIDIA Tesla GPUs [7, 8]. They analyze PTX
expression code to derive the number of instructions and
memory accesses, forming the model based on these pieces
of information. This off-line PTX analysis approach is highly
useful to predict the power and performance of GPUs. One of
the shortcomings of this work is that the resultant model is
specific to a GTX 280 GPU. We tried to apply the model to a
GTX 285 GPU, which is based on the same Tesla architecture,
but it was very time-consuming to tune the parameters of
the model for the new GPU. Given that the Fermi and
the Kepler architectures have significant leap over the Tesla
architecture, a detailed analysis in PTX expression code for
each different GPU based on these architectures may be more
time-consuming. Our statistical modeling approach provides a
unified form for all GPUs, which is a significant advantage in
modeling new GPUs.

Baghsorkhi et al. compensated for prior work [7] by re-
visiting the program dependence graph [1]. This is an adap-

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

gl
d_

32
b	

br
an
ch
	

gl
d_

re
qu

es
t	

te
x_
ca
ch
e_
m
iss
	

di
ve
rg
en

t_
br
an
ch
	

in
st
ru
c@
on

s	

gs
t_
re
qu

es
t	

gs
t_
to
ta
l	

gs
t_
32
b	

gl
d_

12
8b

	

w
ar
p_

se
ria

liz
e	

gs
t_
co
he

re
nt
	

gl
d_

64
b	

w
ar
p_

se
ria

liz
e	

gs
t_
64
b	

ct
a_
la
un

ch
ed

	

St
an
da
rd
ise

d	

pa
r@
al
	
 re

gr
es
sio

n	

co
effi

ci
en

t	

GTX285	

Power	
 Performance	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

l2
_s
ub

p_
re
ad
_	

se
ct
or
_q

ue
rie

s	

l1
_g
lo
ba
l_
lo
ad
_m

iss
	

in
st
_e
xe
cu
te
d	

sh
ar
ed

_l
oa
d	

th
re
ad
_i
ns
t_
ex
ec
ut
ed

	

gl
d_

re
qu

es
t	

l1
_g
lo
ba
l_
lo
ad
_h

it	

A
_s
ub

p_
re
ad
_s
ec
to
rs
	

sh
ar
ed

_s
to
re
	

A
_s
ub

p_
w
rit
e_
se
ct
or
s	

gs
t_
re
qu

es
t	

gs
t_
in
st
_8
bi
t	

gs
t_
in
st
_6
4b

it	

gl
ob

al
_s
to
re
_t
ra
ns
ac
Co

n	

gl
d_

in
st
_1
6b

it	

gs
t_
in
st
_1
28
bi
t	

St
an
da
rd
ise

d	

pa
rC
al
	
 re

gr
es
sio

n	

co
effi

ci
en

t	

GTX460	

Power	
 Performance	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

-
_s
ub

p_
re
ad
_s
ec
to
rs
	

sh
ar
ed

_l
oa
d	

l1
_g
lo
ba
l_
lo
ad
_m

iss
	

l2
_s
ub

p_
re
ad
_	

se
ct
or
_q

ue
rie

s	

-
_s
ub

p_
w
rit
e_
se
ct
or
s	

in
st
_e
xe
cu
te
d	

th
re
ad
_i
ns
t_
ex
ec
ut
ed

	

gl
d_

re
qu

es
t	

l1
_g
lo
ba
l_
lo
ad
_h

it	

gs
t_
in
st
_8
bi
t	

sh
ar
ed

_s
to
re
	

gs
t_
re
qu

es
t	

gl
ob

al
_s
to
re
_t
ra
ns
ac
Co

n	

gs
t_
in
st
_6
4b

it	

gl
d_

in
st
_1
6b

it	

gs
t_
in
st
_1
28
bi
t	

St
an
da
rd
ise

d	

pa
rC
al
	
 re

gr
es
sio

n	

co
effi

ci
en

t	

GTX480	

Power	
 Performance	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

l1
_g
lo
ba
l_
lo
ad
_m

iss
	

l2
_s
ub

p_
re
ad
_	

se
ct
or
_q

ue
rie

s	

>
_s
ub

p_
re
ad
_s
ec
to
rs
	

sh
ar
ed

_l
oa
d	

gl
d_

re
qu

es
t	

>
_s
ub

p_
	

w
rit
e_
se
ct
or
s	

in
st
_e
xe
cu
te
d	

gs
t_
in
st
_8
bi
t	

l1
_g
lo
ba
l_
lo
ad
_h

it	

gl
ob

al
_s
to
re
_t
ra
ns
ac
Co

n	

th
re
ad
_i
ns
t_
ex
ec
ut
ed

	

sh
ar
ed

_s
to
re
	

gl
d_

in
st
_1
6b

it	

gs
t_
re
qu

es
t	

gs
t_
in
st
_6
4b

it	

gs
t_
in
st
_1
28
bi
t	

St
an
da
rd
ise

d	

pa
rC
al
	
 re

gr
es
sio

n	

co
effi

ci
en

t	

GTX680	

Power	
 Performance	

Fig. 11. Selected explanatory variables and their impact of influence on
power and performance.

tive compiler-based approach, capturing the control flow of
computing kernels or memory bank conflicts that are not
considered in the prior work. They showed that the execution
times of simple matrix operations can be precisely predicted on
an NVIDIA Tesla GPU (GeForce 8800) under their adaptive
performance model.

Lee et al. presented a methodology to use DVFS algorithms
for NVIDIA Tesla GPUs, aiming to maximize performance

under given power constraints [14]. A strong limitation of their
work is that the evaluation of power consumption is limited to
a conceptual model. Our evaluation and modeling are based
on real hardware. This is a useful evidence when translating
theory into practice.

Nagasaka et al. conjectured a power model of NVIDIA
Tesla GPU using statistics and the hardware performance
counters [18]. The contribution of our work over theirs is
a generalization of their result. Our model conjectures both
the power and the performance of GPUs across different
architectures, while their work is focused on the power
behavior of a GTX 285 GPU. This extension comes from
our significant engineering effort where we figured out how
to control the voltage and frequency of NVIDIA GPUs by
analyzing the format and semantics of their BIOS image.
Given that NVIDIA GPUs are the current state of the art but
are black-box devices, our open methodology for voltage and
frequency scaling of NVIDIA GPUs is a useful contribution
aside scientific findings.

Jiao et al. evaluated the power and performance of an
NVIDIA Tesla GPU (GTX 280) for compute-intensive and
memory-intensive workload applications [12]. According to
their discussion, energy consumption could often be reduced
by lowering the processing core frequency when workload
is memory-intensive. In this paper, we have found that the
processing core and memory frequencies are in a complicated
causal relation when executing more realistic workload. While
it is often effective to lower the processing core frequency
for memory-intensive workload or vice versa, our evaluation
demonstrates that this is not always the case, depending on
both the workload and the GPU.

Ma et al. investigated a heterogeneous energy management
framework using an NVIDIA Tesla GPU (GeForce 8800) [16].
They demonstrated that (i) a workload distribution between the
CPU and the GPU and (ii) coordinated processing core and
memory scaling for the GPU are important control knobs for
energy optimization. Their contribution encourages this paper
in that both the processing core and memory frequencies of
the GPU are considered. However, this paper is distinguished
in that we performed our evaluation and modeling across
multiple generations of GPUs to address integrated power and
performance issues of GPU-accelerated systems.

The contributions of the above related work are limited to
an individual GPU based on the ancient Tesla architecture.
However, the current state of the art of NVIDIA GPUs is
mostly based on the Kepler and Fermi architectures whose
designs have been highly renovated over the Tesla architecture.
It is questionable if the models or power and performance
management schemes presented by the previous work still hold
for these new architectures. Our contribution is more general-
ized across multiple generations of the GPU architecture.

Sim et al. deepened the preceding analytic performance
model [7] by introducing (i) a new way to identify perfor-
mance bottlenecks and (ii) new metrics for more flexible
performance prediction [23]. In theory, this extended model
is applicable for any GPU based on the NVIDIA Fermi
architecture. In practice, however, the performance behavior
is not consistent among different GPUs even for the same
architecture as demonstrated in this paper. It is worth exploring

if their model is applicable for different GPUs or not. Note that
they focus only on performance (and not power consumption).

There are several other prior work conducted using AMD
GPUs. Zhang et al. analyzed the power and performance
of a Radeon HD 5870 GPU using a random forest method
with the profile counter information [27]. They concluded
that activating a fewer number of ALUs can reduce power
consumption. A shortcoming of this approach is that the
performance loss does not pay for energy saving. Voltage and
frequency scaling is more efficient as demonstrated in this
paper. This is attributed to the fact that they restrict their ap-
proach to software management. Liu et al. developed a power-
efficient task mapping scheme for real-time applications on
heterogeneous platforms using a Radeon HD 5770 GPU [15].
What could be complemented for their work is an integration
of memory performance scaling. Therefore the contribution of
this paper could further extend and generalize their result.

All in all, we are not aware of any previous study that
successfully unifies operating frequency into a single model.
Hence previous models must be constructed for each different
operating frequency level which forces the system designers
to consider multiple instances of the model even for a single
GPU when applying the model for a real system. On the other
hand, our statistical modeling approach allows the model to
contain operating frequency as one of the model parameters.
This unified model would be a strong basis for the dynamic
runtime management of power and performance for GPU-
accelerated systems.

VI. CONCLUSIONS

In this paper, we have presented power and performance
characterization and modeling of GPU-accelerated systems.
We selected four different NVIDIA GPUs from three gen-
erations of architectures in order to demonstrate generality
of our contribution. One of our notable findings is that a
pair of the GPU processing core and memory clocks for
minimized energy is becoming more and more diversified as
a generation of the GPU architecture proceeds. This evidence
encourages future work on the management of power and
performance for GPU-accelerated systems to benefit from
dynamic voltage and frequency scaling. We also demonstrated
that our statistical power and performance models are reliable
enough to predict power and performance across multiple
generations of architectures.

ACKNOWLEDGEMENT

This research was supported in part by Japan Science and
Technology Agency (JST), CREST.

REFERENCES

[1] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.
Hwu, “An adaptive performance modeling tool for GPU architectures,”
in Proc. of the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2010.

[2] S. Che, J. Sheaffer, M. Boyer, L. Szafaryn, L. Wang, and K. Skadron,
“A characterization of the Rodinia benchmark suite with comparison
to contemporary CMP workloads,” in Proc. of the IEEE International
Symposium on Workload Characterization, 2010.

[3] Y. E. Corporation, “WT1600 digital power meter,” 2012, http:
//tmi.yokogawa.com/discontinued-products/digital-power-analyzers/
digital-power-analyzers/wt1600-digital-power-meter/.

[4] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: a dynamic
optimization framework for bulk-synchronous applications in heteroge-
neous systems,” in Proc. of the International Conference on Parallel
Architectures and Compilation Techniques, 2010.

[5] N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan, and S. Yalamanchili,
“Lynx: A dynamic instrumentation system for data-parallel applications
on GPGPU architectures,” in Proc. of the IEEE International Symposium
on Performance Analysis of Systems and Software, 2012.

[6] S. Hand, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
accelerated software router,” in Proc. of ACM SIGCOMM, 2010.

[7] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” in Proc. of the
ACM/IEEE International Symposium on Computer Architecture, 2009.

[8] S. Hong and H. Kim, “An integrated GPU power and performance
model,” in Proc. of the ACM/IEEE International Symposium on Com-
puter Architecture, 2010.

[9] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
maximizing performance for a given power budget,” in Proc. of the
IEEE/ACM International Symposium on Microarchitecture, 2006.

[10] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitor-
ing and prediction on real systems with application to dynamic power
management,” in Proc. of the IEEE/ACM International Symposium on
Microarchitecture, 2006.

[11] K. Jang, S. Han, S. Han, S. Moon, and K. Park, “SSLShader: cheap
SSL acceleration with commodity processors,” in Proc. of the USENIX
Conference on Networked Systems Design and Implementation, 2011.

[12] Y. Jiao, H. Lin, P. Balaji, and W. Feng, “Power and performance
characterization of computational kernels on the GPU,” in Proc. of
the IEEE/ACM International Conference on Green Computing and
Communications, 2010.

[13] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: first-class
GPU resource management in the operating system,” in Proc. of the
USENIX Annual Technical Conference, 2012.

[14] J. Lee, V. Sathisha, M. Schulte, K. Compton, and N. S. Kim, “Improving
throughput of power-constrained GPUs using dynamic voltage/frequency
and core scaling,” in Proc. of the International Conference on Parallel
Architectures and Compilation Techniques, 2011.

[15] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin, “Power-
efficient time-sensitive mapping in heterogeneous systems,” in Proc. of
the International Conference on Parallel Architectures and Compilation
Techniques, 2012.

[16] K. Ma and X. Wang, “GreenGPU: a holistic approach to energy
efficiency in GPU-CPU heterogeneous architectures,” in Proc. of the
International Conference on Parallel Processing, 2012.

[17] M. McNaughton, C. Urmson, J. Dolan, and J.-W. Lee, “Motion planning
for autonomous driving with a conformal spatiotemporal lattice,” in
Proc. of the IEE International Conference on Robotics and Automation,
2011.

[18] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of GPU kernels using performance coun-
ters,” in Proc. of the Green Computing Conference, 2010.

[19] NVIDIA, “NVIDIA’s next generation CUDA computer architecture:
Fermi,” 2009, http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf.

[20] NVIDIA, “CUDA TOOLKIT 4.2,” 2012, http://developer.nvidia.com/
cuda/cuda-downloads.

[21] NVIDIA, “NVIDIA’s next generation CUDA computer architec-
ture: Kepler GK110,” 2012, http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[22] NVIDIA, “CUDA Documents,” 2013, http://docs.nvidia.com/cuda/.
[23] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance analysis

framework for identifying potential benefits in GPGPU applications,” in
Proc. of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2012.

[24] J. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,
G. Liu, and W.-M. Hwu, “Parboil: a revised benchmark suite for scien-
tific and commercial throughput computing,” IMPACT-12-01, University
of Illinois at Urbana-Champaign, Tech. Rep., 2012.

[25] W. Sun, R. Ricci, and M. Curry, “GPUstore: harnessing GPU computing
for storage systems in the OS kernel,” in Proc. of Annual International
Systems and Storage Conference, 2012.

[26] TOP500 Supercomputing Site, 2012, http://www.top500.org/.
[27] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power analysis

of ATI GPU: a statistical approach,” in Proc. of the IEEE International
Conference on Networking, Architecture, and Storage, 2011.

